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Abstract 
Background: This study is concerned with the special case of a putted ball intersecting a standard golf hole at its 

diameter. The velocity of the ball at the initial rim of the hole is termed the launch velocity and depending upon its 

value the ball may either be captured or it may escape capture by jumping over the hole. The critical value of the 

launch velocity (V) is such that lesser values result in capture while greater values produce escape. Purpose: Since 

the value of the V entered prominently in some theoretical studies of putting, the aim of the current study is to 

provide an original re-evaluation of V and to contrast our results with existing results. Method: This analytical 

analysis relies on trigonometry in conjunction with Newtonian mechanics and the mathematics of projectiles. The 

results of a recent study into the mathematics of a bouncing ball which included the notions of restitution and 

friction were also employed in the analysis. Results: If bouncing and slipping do not occur when the ball hits the far 

rim of the hole our analysis produces a value of V of 1.356 m/s. When bouncing and slipping are present we find that 

V is at least 1.609 m/s but increases beyond this value as slipping and friction become greater. Useful relations 

which relate the dynamics and geometry of the ball to V are provided. Conclusion: Since ambient conditions may 

influence the extent of bounce and slippage we conjecture that the value of V is not unique. 

Keywords: golf, putting, ball velocities. 

1. Introduction 

Putting is acknowledged to be the most prevalent shot in golf with average and professional golfers taking 

approximately 40% of their strokes on the putting green (Alexander & Kern, 2005; Broadie, 2012; Pelz, 2000; 

Wiren, 1992). This provides impetus for the study of putting from various points of view. The details of how a 

putted golf ball interacts with a regulation golf hole is of theoretical interest. The current investigation deals 

exclusively with the special case that the putted ball intersects the hole at its widest point – that is, the ball proceeds 

into the gap along the hole’s diameter and not along any shorter chord. Of particular significance is the quantity V, 

termed the critical launch velocity. This is the velocity of the ball, as measured at the initial rim of the hole, so that 

balls with greater velocity jump over the hole, while balls of lesser velocity fall into the hole. Previous work 

concerning the value of V is scant. Mahoney (1982, Eq. 3) proposed (after slight rearrangement) the relation 

𝑉 = (𝐷/𝑑)√𝑑𝑔       (1) 

where d is the diameter of the ball (1.68 in.), D is the diameter of the hole (4.25 in.), and g is the gravitational 

acceleration (9.8 m/s2). The resulting value of V is 1.636 m/s. This value is subject to suspicion owing to the manner 

in which (1) was derived. In the derivation it was assumed that during its flight above the hole that the ball was 

replaced by its point-mass. This has the effect of avoiding any controversy concerning the manner in which the ball 

and the far rim interact. By having the ball shrink to a point-mass thorny questions concerning the influence of the 

ball’s rotation and whether the collision with the far rim is elastic or inelastic become moot. Details of the work by 

Holmes (1991) on the subject are not transparent. Holmes (1991) is an investigator whose research concerns the 

interaction of a putted ball with the hole. In that work he put forth the value of V as 1.626 m/s, although the details 

of how that number was obtained are not clear. It seems evident that it should be possible to derive an equation (or 

system of equations) whose solution yields V. In contrast, Holmes (1991) presents a few equations, none of which 

contain V, along with a flow chart of alternative outcomes, and then in conjunction with a hidden computer program 

comes up with the stated value of V. The related assumptions were that the ball does not bounce nor slip upon 

contact with the far rim of the hole. Note that the 1.626 m/s value advocated by Holmes (1991) is quite close to the 
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value 1.636 m/s given by (1). Furthermore, experimental data displayed by Holmes (1991, Fig. 14) seem to support 

the preceding numerical results, although the data represented in the figure exhibit considerable scatter.  

To many the matter seems to be closed, but the prior assumptions that the ball does not bounce nor slip when it hits 

the far rim of the hole are open to question. On that basis we continue to explore the subject using less restrictive 

assumptions. Therefore, the aim of the current study is to provide an original re-evaluation of V and to contrast our 

results with existing (Holmes, 1991) results. This study employs an analytical analysis that relies on trigonometry in 

conjunction with Newtonian mechanics and the mathematics of projectiles. The following section presents 

kinematic results, which are relevant, and have not appeared in the literature.  

2. Kinematic Considerations 

Consider a putted ball that is directed across the diameter of a regulation hole. As the ball leaves the initial rim of the 

hole its horizontal velocity is given as v. If v is less than vm the ball will not reach the far rim, but will merely fall 

into the hole. Such putts are of no further concern. Putts for which v exceeds vm will hit the far rim. It is this class of 

putts which is of interest. The situation is illustrated in Figure 1. 

 

Figure 1. Depiction of a golf ball that leaves the initial rim (left) with a horizontal velocity v and after an interval t 

strikes the far rim (right) with a descending velocity vf. The angle 𝜃 describes the orientation of the ball to the rim at 

impact while ϕ gives the downward motion of the ball at impact 

 

Figure 1 is useful in explaining the two important angles θ and ϕ. The first of these angles θ is the degree of 

declination (as measured from the horizontal) of the ball’s radius which makes instantaneous contact with the far 

rim. This angle could vary from zero to 90 degrees and describes the orientation of the ball at the moment of contact.  

The angle ϕ (again measured from the horizontal) describes the descending trajectory of the ball as it intersects with 

the far rim. It is also a measure of the slope of the terminal velocity vector. The symbolic notation used here and 

subsequently is summarized in Table 1.  

 
    Table 1. Nomenclature 

a  Acceleration experienced by ball upon impact 

d Diameter of ball 

D Diameter of hole 

e Coefficient of restitution 

F Force of impact 

g Acceleration of gravity 

I Moment of inertia of ball 

m Mass of ball 

r Radius of ball 

t Time of passage from rim to rim 

v Launch velocity of ball from initial rim 

vf Ball velocity upon reaching far rim 

vm Minimum launch velocity to reach far rim 
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The coordinate system adopted has x increasing horizontally (in Figure 1) from left to right, and y increasing 

downward. Let t be the interval of time required for the ball to pass from rim to rim. The ball is assumed to behave 

ballistically and so from the physics of projectiles it follows that the components of the terminal velocity vector are  

vx = v              (2) 

and 

vy = gt              (3) 

The distances traveled in the coordinate directions are  

x = vt             (4) 

and 

y = gt2/2               (5) 

From the geometry displayed in Figure 1 it is clear that at the point of contact with the far rim that the center of the 

ball is short of the far rim by a horizontal distance r cosθ, and is above that rim by r sinθ. Hence, in its passage from 

rim to rim the ball moves horizontally by an amount  

x = D - r cosθ                   (6) 

and drops by 

y= r - r sinθ                 (7)  

Equating (4) to (6) followed by division by r yields 

vt/ r = D/ r -  cosθ       (8) 

Equating (5) and (7) followed by division by r/2 gives 

gt2/ r = 2(1-sinθ)       (9) 

Division of (9) by (8) gives  

  gt/ v =2(1 − 𝑠𝑖𝑛𝜃)/ (𝐷/𝑟 − 𝑐𝑜𝑠𝜃)      (10) 

The slope of the terminal velocity vector is tanϕ, and from (2) and (3) 

tanϕ = gt/v               (11) 

From (10) to (11) 

tanϕ =2(1 − 𝑠𝑖𝑛𝜃)/ (𝐷/𝑟 − 𝑐𝑜𝑠𝜃)                  (12) 

This important equation provides the relationship between θ and ϕ. 

Next, take the square root of both sides of (9) and then divide the result into (8) to get 

v/√𝑔𝑟 = (𝐷/𝑟 − 𝑐𝑜𝑠𝜃)/(√2√1 − 𝑠𝑖𝑛𝜃)         (13) 

This relates θ and v. 

 

vx Horizontal component of velocity 

vy Downward component of velocity 

𝑣ξ1 Component of 𝑣𝑓 in the ξ direction 

𝑣𝜂1 Component of 𝑣𝑓 in the 𝜂 direction 

𝑣ξ2 Rebound velocity in the ξ direction 

𝑣𝜂2 Rebound velocity in the 𝜂 direction 

V Critical value of v 

x Horizontal dimension of length 

y Downward dimension of length 

α Angular acceleration experienced by ball upon impact 

𝜖 Effective time of impact 

η Radial dimension of length 

θ Angle giving orientation of ball at impact 

θ1 Angle of approach to ξ – axis 

θ2 Angle of rebound to ξ – axis 

μ Coefficient of sliding function 

ξ Tangential dimension of length 

τ1 Moment produced by Fξ 

τ2 Moment associate with α  

ϕ Angle giving descending trajectory of ball at impact 

ω Angular velocity of ball 
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Recall from the derivation of (1) that once the ball was in flight over the hole it was allowed to shrink to its center 

point and then continue its journey until it hit the rim on the far side of the hole. All of the equations (2) through (13) 

may be recast for this situation. The result of doing this is obtained by merely replacing the trigonometry functions 

(both 𝑐𝑜𝑠𝜃 and 𝑠𝑖𝑛𝜃) by zero as they appear in (2) through (13). In particular, the new version of (13) becomes 

  𝑉/√𝑔𝑟 = D/√2 𝑟                                                                            (13a) 

Upon noting that d = 2𝑟 and doing simple rearrangement this becomes the same as (1). 

3. The Numerical Value of vm 

The smallest value of v which results in a ball making contact with the far rim is called vm. The condition occurs 

when θ = 0. As previously mentioned g = 9.8m/s2, D = 4.25in., and d = 1.68in. It follows that r = 0.84in., D/r = 

5.0595, and in SI units √𝑔𝑟 = 0.4573 m/s. Substitution into (13) produces vm = 1.313m/s, which agrees exactly with 

the value given by Holmes (1991). Although not called for, substitution into (12) reveals that tanϕ = 0.4927, and so 

ϕ = 26.23 degrees.  

4. Ball Velocities 

As the ball approaches the far rim it possesses two types of motion – it is translating and it is rotating. The center of 

the ball has a velocity vf (see Figure 1) which is given by 

vf = v/cosϕ               (14) 

Also, if the ball had been rolling as it left the initial rim, it would retain the angular velocity which is  

ω = v/r               (15) 

Although this is likely to be the case it should be stated that putts which originate close to the initial rim might not 

have had the opportunity to develop a full measure of rotation.  

Table 2 presents some numerical values of θ, ϕ, v, and ω that are generated by (12), (13), (14), and (15).  

 

     Table 2. A short table of values generated by (12), (13), (14), and (15). θ and ϕ are measured in degrees, v and 

vf are expressed in meters per second, and ω is given in radians per second.  

θ ϕ v vf ω 

0 26.23 1.313 1.463 61.539 
5 24.19 1.375 1.508 64.445 

10 22.08 1.449 1.564 67.913 

15 19.91 1.538 1.625 72.085 

20 17.71 1.642 1.724 76.959 

25 15.54 1.767 1.834 82.818 

30 13.41 1.918 1.971 89.895 

35 11.37 2.100 2.142 98.425 

40 9.45 2.323 2.355 108.877 

45 7.67 2.601 2.624 121.907 

50 6.05 2.953 2.969 138.405 

55 4.61 3.411 3.422 159.871 

60 3.36 4.028 4.035 188.789 

 

5. Rim Interaction 

The nature of the impact between the ball and the far rim is crucial in arriving at a valid value of V. There are two 

aspects which seem to be relevant. The first of these (Aspect 1) concerns whether the ball and the rim grip each 

other upon contact or slip against each other. There is no other condition possible – either they grip or they slip. 

Even when slipping is in effect there is another consideration and that is the value of the coefficient of friction, μ. 

When two bodies slide against each other the friction force depends directly upon the value of μ. The frictional force 

plays a role in the modeling of the impact when there is slippage. The second aspect (Aspect 2) concerns the extent 

of bounce that takes place when the ball hits the far rim. This aspect is quantified by e, the coefficient of restitution. 

Holmes (1991) takes a stand in these matters. For Aspect 1 Holmes (1991) advocates grip rather than slip, and for 

Aspect 2 it declares that e = 0 – that is, there is no bounce. This latter assertion is subject to scrutiny since instances 

of putts bouncing off the far rim have been observed both in practice and on televised golf tournaments. In contrast 

to Holmes’ (1991) position that the ball neither slips nor bounces upon hitting the far rim, the current authors have 

observed bouncing and see no reason why slipping is not also possible. The degree to which these two aspects occur 

may not be constant since ambient conditions could influence the values of μ and e. The lubricating effect of 

moisture might lead to slippage, while under dry conditions the same conditions might result in gripping. 

Since both aspects have opposing limits it is clear that there are four alternatives. These are denoted by Cases A, B, 

C, and D, and their meaning is given in Table 3. These cases will be treated in the following two sections.  
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   Table 3. Definition of what is meant by Case A, Case B, Case C, and Case D.  

Aspect1 Aspect2 Case 

Slip No bounce A 

Slip Bounce B 

Grip No bounce C 

Grip Bounce D 

 

6. Case A and Case B 

Cases A and B are treated together by using the results given by Cross (2015). Cross is an academic physicist who 

conducts research in sports science. Specifically, as many sports are played with balls, his interest gravitated toward 

the technical aspects of bouncing balls (Cross, 1999; 2002; 2010). In studying the mathematics of a bouncing ball, 

Cross develops equations which are relevant to Cases A and B, but do not apply to Cases C and D. We retain most 

of Cross’s notation except for substituting ξ for x, and η for y. This is done since x and y are already in use with 
different meaning. The ball is envisioned to strike the ξ – axis with a descending blow and then to rebound. The 

subscript 1 applies to conditions just prior to the ball striking the ξ – axis, while the subscript 2 refers to conditions 

just after contact. The ball’s trajectory makes an angle of θ1 with the ξ – axis just before contact, and just after 

contact it rebounds so that its trajectory makes an angle θ2 with the ξ – axis. In the present situation, the ξ – axis is 

taken to be the kissing tangent line to the ball at the point where the ball and the far rim meet. This is pictured in 

Figure 2. The η – axis is perpendicular to the ξ – axis, the positive portion of which starts at the contact point and 

extends through the center of the ball and beyond.  

 

Figure 2. An enlargement showing the ball approaching from the left as it hits the far rim. Important angles are 

noted along with the x – y coordinates and the ξ – 𝜂 coordinates. 

 

After changing the independent variables in the manner just described, Cross’s (2015) equations for a bouncing ball 

become 

𝑣ξ2 = 𝑣ξ1 − 𝜇(1 + 𝑒)𝑣η1           (16) 

And  

𝑣η2 = 𝑒𝑣η1              (17) 

Where 𝑣ξ and 𝑣η denote velocity components referred to the respective axes. In the present instance 

𝑣ξ1 = 𝑣𝑓𝑠𝑖𝑛(𝜃 − 𝜙)                    (18) 

and 

𝑣η1 = 𝑣𝑓𝑐𝑜𝑠(𝜃 − 𝜙)                    (19) 

Unquestionably, 𝑣η1 should be negative, but as a matter of convenience Cross (2015) specifies that it is to be taken 

as positive. Upon incorporating (14) and the trigonometric identities for 𝑠𝑖𝑛(𝜃 − 𝜙) and 𝑐𝑜𝑠(𝜃 − 𝜙) one obtains 

𝑣ξ1 = 𝑣(𝑠𝑖𝑛𝜃 − 𝑐𝑜𝑠𝜃𝑡𝑎𝑛𝜙)            (20) 
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and 

𝑣η1 = 𝑣(𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃𝑡𝑎𝑛𝜙)          (21) 

Note that 

𝑡𝑎𝑛𝜃2 = 𝑣η2/𝑣ξ1        (22) 

Combination of (16), (17), (20), (21), and (22) yields 

𝑡𝑎𝑛𝜃2 = 𝑒(𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃𝑡𝑎𝑛𝜙)/[𝑠𝑖𝑛𝜃 − 𝑐𝑜𝑠𝜃𝑡𝑎𝑛𝜙 − 𝜇(1 + 𝑒)(𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃𝑡𝑎𝑛𝜙)]          (23) 

The rebound angle θ2 is referred to the ξ – axis. When the same rebound is referred to the horizontal axis, the 

rebound angle becomes θ2 + 90 – θ degrees. If the rebound is to be straight up (and hence be on the verge of 

escaping) this latter angle must be 90 degrees. This requires that θ2 and θ be equal. Upon setting θ2 equal to θ in (23) 

followed by rearrangement one obtains 

𝑡𝑎𝑛𝜃(𝑡𝑎𝑛𝜃 − 𝑡𝑎𝑛𝜙) − (1 + 𝑡𝑎𝑛𝜃𝑡𝑎𝑛𝜙)[𝑒 + 𝜇(1 + 𝑒)𝑡𝑎𝑛𝜃] = 0          (24) 

Upon using (12) to provide values of 𝑡𝑎𝑛𝜙, (24) may be solved numerically for θ for specified values of e and μ. 

Some values of θ are tabulated in Table 4. For those values of θ, (13) may be used to find the corresponding values 

of V. These numbers are also shown in Table 4.  

      

      Table 4. The first table gives value of θ (expressed in degrees) obtained by solving (24) using selected values 

of e and μ. The second table presents the corresponding values of V (expressed in m/s) as obtained from (13). 

The columns headed by e=0 correspond to Case A. The remaining columns are for Case B.  

 e = 0 e = 0.1 e = 0.2 e = 0.3 

μ = 0 θ = 18.41 θ = 26.36 θ = 31.19 θ = 34.80 

μ = 0.1 22.38 29.57 34.20 37.70 

μ = 0.2 26.29 32.81 37.22 40.61 

μ = 0.3 30.08 36.02 40.20 43.45 

 e = 0 e = 0.1 e = 0.2 e = 0.3 

μ = 0 V = 1.607 V = 1.806 V = 1.958 V = 2.092 

μ = 0.1 1.699 1.904 2.068 2.215 

μ = 0.2 1.804 2.016 2.193 2.353 

μ = 0.3 1.920 2.142 2.333 2.508 

 

7. Case C and Case D 

Case C stipulates that upon contact the ball grips the far rim and that it does not bounce. This is the situation 

envisioned by Holmes (1991). Since there is no bounce the ball relinquishes its linear motion. The same must be true 

of the rotary motion. The reason for this follows from the condition necessary for evaluating V. That condition 

requires that the ball be in a neutral state. That is, the ball must be on the border between escape and capture. If after 

initial contact the ball were to have even a slight rotation to the right (that is, clockwise) it would surely escape. If it 

had a rotation to the left it would be captured. Hence, to be in the neutral state rotation must stop.   

The neutral state is only possible if the moment urging rotation in one direction is exactly countered by an equal 

moment in the opposite direction.  

The sudden stopping of linear motion gives rise to one of the moments – call it 𝜏1. The tangential velocity rapidly 

goes from 𝑣ξ1 to zero. The acceleration involved is  

𝑎ξ = (0 − 𝑣ξ1)/𝜖       (25) 

where 𝜖  is the effective time required to bring about the change. The force required is 

𝐹ξ = 𝑚𝑎ξ              (26) 

and the associated moment is  

𝜏1 = 𝑟𝐹ξ              (27) 

Combining (20) with (25), (26), and (27) gives 

𝜏1 = 𝑚𝑟𝑣(𝑐𝑜𝑠𝜃𝑡𝑎𝑛𝜙 − 𝑠𝑖𝑛𝜃)/𝜖               (28) 

The rotation of ω abruptly stops and involves an angular acceleration of  

𝛼 = (0 − 𝜔)/𝜖                  (29) 

The associated moment is 

𝜏2 = 𝐼𝛼             (30) 
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where I is the moment of inertia of the ball. A reasonable value of I is that for a uniform sphere 

𝐼 = (2/5)𝑚𝑟2                  (31) 

Combining (15) with (29), (30), and (31) gives 

𝜏2 = −(2/5)𝑚𝑟𝑣/𝜖       (32) 

Since 𝜏1 and 𝜏2 are equal and opposite their sum must be zero. That result yields 

(2/5) = 𝑐𝑜𝑠𝜃(𝑡𝑎𝑛𝜙 − 𝑡𝑎𝑛𝜃)                             (33) 

Upon using (12), the numerical solution to (33) is θ = 3.5177 degrees. Then substitution of this value of θ into (13) 

produces V=1.356 m/s. Case D allows for bounce. An exact analysis of this case is daunting due to our inability to 

develop equations which predict the angle of rebound θ2. Scrutiny of Case A and Case B suggests that an increase in 

bounce results in an increase of V. If this rule carries over to Case C and Case D then the values of V for Case D 

should exceed the value of V found for Case C which was 1.356 m/s. 

8. Conclusion 

The primary goal of this study was to establish the critical value of the launch velocity, V. It is critical in the sense 

that it represents a point in the continuum of launch velocities which separates putts which are captured by the hole 

from putts which escape capture by jumping over it. Only putts directed along the diameter of the hole are involved. 

As a prelude to this main thrust we found that the attitude of the ball just prior to hitting the far rim (given by 𝜃), the 

slope of the terminal trajectory (given by tan𝜙), and the launch velocity (given by v) are related through (12) and 

(13). Furthermore, the terminal motion of the ball as symbolized by vf and ω are represented by (14) and (15). 

Selected values of these variables are displayed in Table 2.  

The value of V plays a role in theoretical studies of putting, see Holmes (1991), Penner (2002), and Mahoney, 

Connaughton, & Jang (2016). The value adopted by these researchers is 1.626 m/s (or rounded to 1.63) which is the 

number proposed by Holmes (1991). Because of its perceived importance, further study into the value of V seemed 

appropriate.  

Although 1.626 m/s appears to be a usable value of V, we believe that it cannot be the result of the no bounce and no 

slip assumption. That corresponds to Case C where we found V = 1.356 m/s. We have observed balls bouncing off 

the far rim, and we imagine that slipping is also possible when there is sufficient moisture to act as a lubricant. Table 

4 follows from the equations of Cross (2015) and shows that when bounce and slip are allowed that values of V 

depend strongly upon e and μ. It seems unlikely that e and μ would always have the same value, hence it seems 

reasonable that V would not be constant, but would depend upon ambient conditions. Increasing the value of V 

would benefit golfers who wish to improve their putting proficiency since by doing so the chance of the ball 

jumping over the hole would be lessened. There seems to be no practical manner to preferentially augment V since 

golfers are enjoined to follow the rules and to play the course as they find it. Impractical means of increasing V 

could involve increasing D (the size of the hole), or decreasing d (the diameter of the ball). Also, reference to Table 

4 shows that any increase in e (coefficient of restitution) or of μ (coefficient of sliding friction) would result in the 

sought-after increase in V. We offer no sure method for increasing these coefficients.  
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